Surname

Centre Number Candidate Number

Other Names

GCE A level

1094/01

CHEMISTRY CH4

P.M. THURSDAY, 26 January 2012

1¾ hours

FOR EXAMINER'S USE ONLY							
Section	Question	Mark					
	1						
A	2						
	3						
D	4						
B	5						
TOTAL	MARK						

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a calculator;
- an 8 page answer book;
- a **Data Sheet** which contains a **Periodic Table** supplied by WJEC. Refer to it for any **relative atomic masses** you require.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Section A Answer all questions in the spaces provided.

Section B Answer both questions in Section B in a separate answer book which should then be placed inside this question-and-answer book.

Candidates are advised to allocate their time appropriately between Section A (40 marks) and Section B (40 marks).

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

The maximum mark for this paper is 80.

Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.

You are reminded that marking will take into account the Quality of Written Communication in all written answers.

		SECTION A						
	Answer	all questions in the spaces	provided.					
Th	e formulae of some co	mpounds are shown below	<i>W</i> .					
	CH ₃ CH ₂ NH ₂	CH ₃ CH ₂ CONH ₂	CH ₃ CHCHCHO					
	Α	В	С					
CH	I ₃ CH(OH)CH ₂ CH ₃	CH ₂ CHCH ₃	CH ₃ CH ₂ COCH ₂ CH ₃					
	D	E	F					
bel	ch letter may be used ow. ve the letter of the con		r not at all, to answer the ques	tions				
(i)	(i) is most basic, [1]							
(ii)	(ii) forms yellow crystals when warmed with iodine in alkaline solution, [
(iii)	(iii) forms a silver mirror when warmed with Tollens' reagent,							
(iv)	exhibits E-Z isome	rism.		[1]				
) (i)	 Butylamine is one of the compounds responsible for the smell of rotting fish be prepared in the laboratory from 1-chlorobutane. 							
	Classify the reaction mechanism when butylamine is prepared in this way. [1]							
•••••	 (ii) Explain why phenylamine, an aromatic amine, cannot be prepared chlorobenzene using a similar reaction to that in part (i). 							

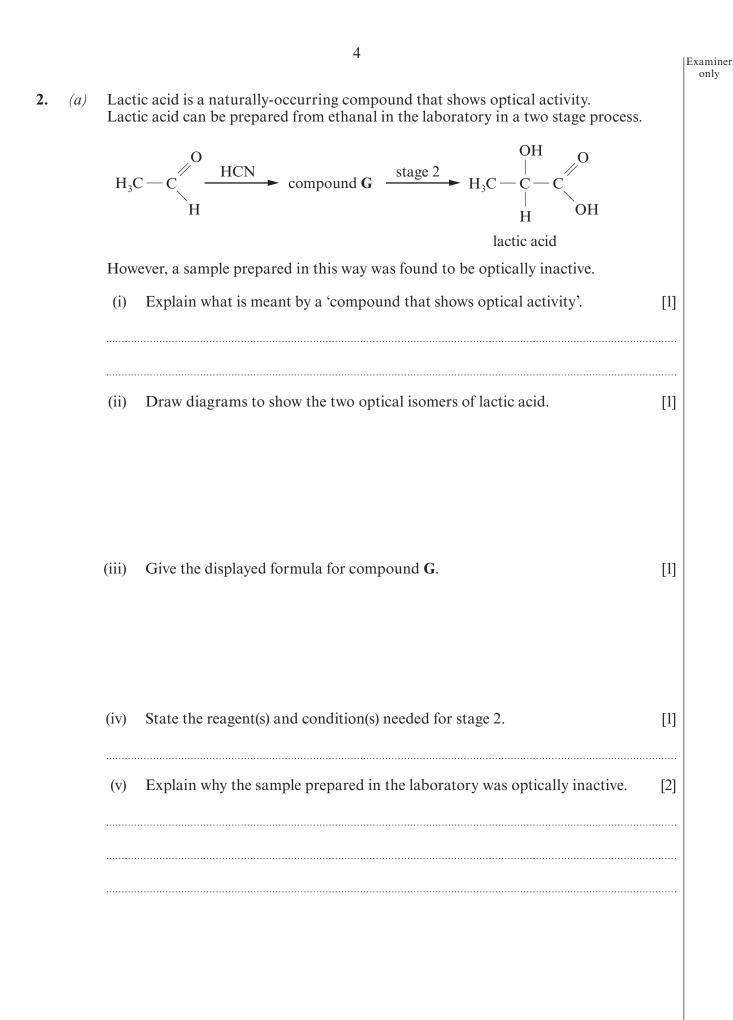
1.

.....

 $1094 \\ 010003$

Examiner only

(iii)	Write a balanced equation for the reaction of butylamine with ethanoyl chloride,
•••••	
(iv)	Phenylamine is normally prepared from nitrobenzene.


I. Give the reagents used in this preparation and a technique to separate the product from the reaction mixture. [3]

II. When phenylamine reacts with cold nitric(III) acid (nitrous acid) a colourless solution of benzenediazonium chloride is formed. Write the formula for benzenediazonium chloride. [1]

III. State the type of organic substance formed when aqueous benzenediazonium chloride reacts with an alkaline aqueous solution of naphthalene-2-ol. [1]

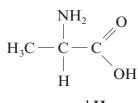
.....

Total [13]

Examiner only

[1]

[1]


 $1094 \\ 010005$

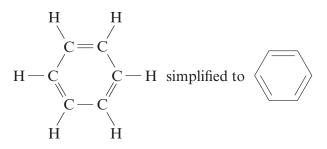
(b) Draw the displayed formula of the organic compound formed when lactic acid reacts with

(i) sodium hydroxide,

(ii) acidified potassium dichromate.

(c) Lactic acid can be formed directly from compound **H**.

$\text{compound}\ H$


(i)	Give the systematic name for compound H.	[1]
(ii)	State the reagent needed to convert H into lactic acid.	[1]
(iii)	Explain why compound H has a much higher melting temperature than acid.	lactic [2]
·····		
	Tot	al [12]:

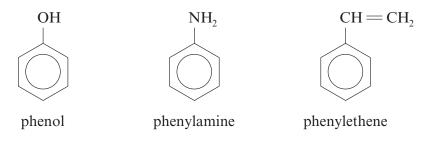
Read the passage below and then answer the questions in the spaces provided. 3.

Benzene

Benzene, C_6H_6 , is a colourless, highly flammable liquid with a sweet smell, but it is carcinogenic. The word "benzene" derives historically from "gum benzoin", an aromatic resin known to European pharmacists and perfumers since the 15th century.

Discovering the structure of benzene proved to be quite difficult. Benzene was first isolated and identified by Michael Faraday in 1825 from the oily residue derived from the production of illuminating gas. However, it was not until 1865 that Kekulé proposed this structure for benzene.

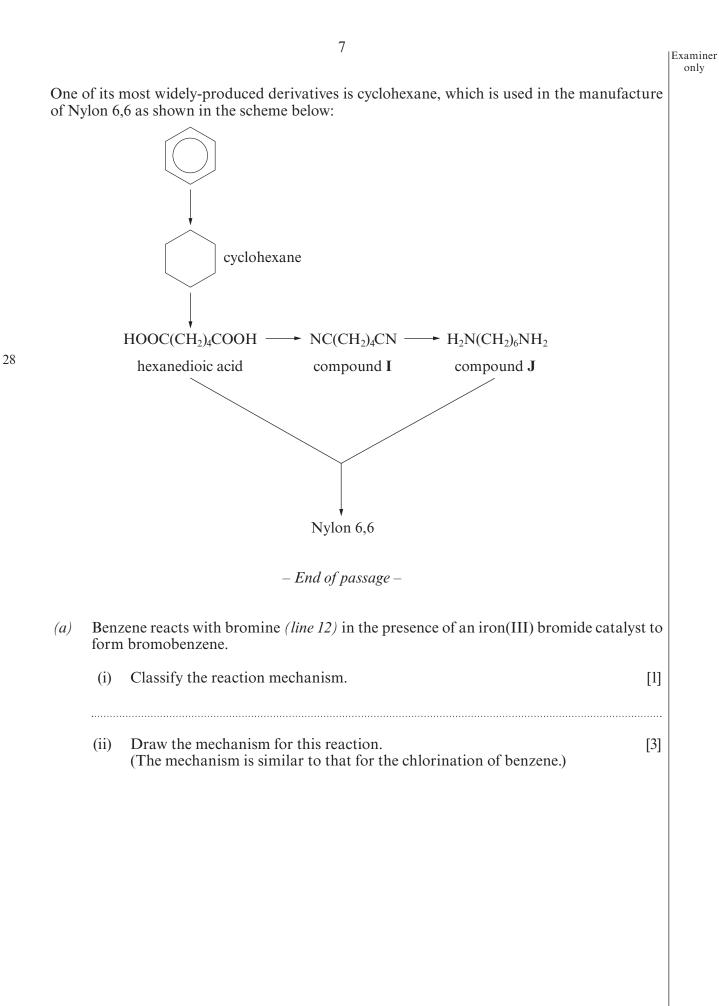
However this structure fails to explain why benzene does not react like an alkene. Ethene reacts readily with bromine as follows:


$$CH_2 = CH_2 + Br_2 \longrightarrow CH_2Br CH_2Br$$

In contrast, benzene needs far more stringent conditions to react with bromine.

It was around 1930 that the structure of the benzene ring was finally confirmed using X-ray diffraction. It was shown that all the carbon-carbon bonds were of the same length. To account for this, it was proposed that three pairs of electrons were not localised in particular double bonds, but were shared equally amongst all six carbons. These electrons were said to be delocalised giving benzene great stability (delocalisation energy of benzene). The structure of benzene is therefore usually represented as:

An understanding of the structure of benzene was crucial to early chemists since benzene is 20 the parent molecule of all arene or 'aromatic' compounds and a huge variety of compounds are derived from benzene. Simple benzene derivatives include:



In the 19th and early 20th centuries, benzene was used as an after-shave lotion because of its pleasant smell, but today benzene is used to make other chemicals. 25

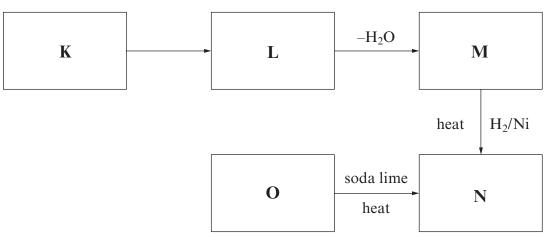
15

10

5

(i)	Explain what is meant by the <i>delocalisation energy</i> of benzene (<i>line 17</i>). [1]
(ii)	Given that the enthalpy change of hydrogenation of cyclohexene is -120 kJ mol^{-1} and that the enthalpy change of hydrogenation of benzene is -208 kJ mol^{-1} , calculate the delocalisation energy of benzene. [2] \rightarrow $+$ $H_2 \rightarrow$ $\Delta H^{\Rightarrow} = -120 \text{ kJ mol}^{-1}$
с	benzene $\Delta H^{\textcircled{O}} = -208 \text{ kJ mol}^{-1}$
	$\Delta H^{\textcircled{a}} = \dots kJ mol^{-1}$
	$\Delta H^{\textcircledleftarrow} = \dots kJ mol^{-1}$ the information in the passage to give a reason why benzene is no longer used in r-shave lotion. [1]
after In th of b	the information in the passage to give a reason why benzene is no longer used in
after In th of b	the information in the passage to give a reason why benzene is no longer used in r-shave lotion. [1] ne production of Nylon 6,6 (<i>line 28</i>) each of the repeating units requires two molecules benzene; one for the formation of hexanedioic acid and one for the formation of
after In th of b com	the information in the passage to give a reason why benzene is no longer used in r-shave lotion. [1] ne production of Nylon 6,6 <i>(line 28)</i> each of the repeating units requires two molecules benzene; one for the formation of hexanedioic acid and one for the formation of apound J .

	9	Examiner only
(iv)	Draw the repeating unit in Nylon 6,6. [1]
(v)	What type of condensation polymer is Nylon 6,6? [1]
(vi)	A typical plant makes 800 tonnes of nylon per day. Given that the relative molecular mass of each repeating unit is 226 and assuming yields of 100% at each step, calculate the mass of benzene needed per day to produce this quantity of nylon. [2]	n f


Total [15]

Total Section A [40]

SECTION B

Answer **both** questions in the separate answer book provided.

4. (a) Study the reaction scheme shown below and the other information about compounds **K–O** that follows:

Compound **K** has a relative molecular mass of 58.06. It gives an orange-yellow solid with 2, 4-dinitrophenylhydrazine and gives a positive triiodomethane (iodoform) test.

0.500 g of compound **O** in aqueous solution requires 56.75 cm³ of sodium hydroxide solution of concentration 0.100 mol dm⁻³ for complete neutralisation. Compound **O** reacts with sodium hydroxide in a 1:1 molar ratio.

Compound L cannot be oxidised to compound O.

- (i) Calculate the relative molecular mass of compound **O**. [2]
- (ii) Identify compounds **K** and **O**, giving your full reasoning. [5]
- (iii) Identify compounds L, M and N. [3]
- (iv) State the reagent(s) needed for the conversion of L to M. [1]
- (b) Rhodri prepared benzenecarboxylic acid, C_6H_5COOH , by hydrolysing ethyl benzenecarboxylate, $C_6H_5COOC_2H_5$.

The overall equation for this hydrolysis is:

 $C_6H_5COOC_2H_5 + H_2O \longrightarrow C_6H_5COOH + C_2H_5OH$

He used the following method.

- Dissolve 3.20 g of sodium hydroxide in water and make up to 40.0 cm³.
- Add the aqueous sodium hydroxide to 2.90 cm³ of ethyl benzenecarboxylate in a round bottomed flask and reflux for 30 minutes.
- Transfer the mixture into a beaker and add dilute sulfuric acid until the solution is acidic.
- Filter the crystals obtained and recrystallise the benzenecarboxylic acid by dissolving in the minimum amount of hot water.

At the end of the experiment Rhodri's yield of benzenecarboxylic acid was 1.45 g.

(i)	Suggest why Rhodri had to add sulfuric acid before recrystallising.	[1]
(ii)	State why water is a suitable solvent for the recrystallisation.	[1]
(iii)	Calculate the concentration, in mol dm ⁻³ , of the aqueous sodium hydroxide us	ed. [2]
(iv)	The density of ethyl benzenecarboxylate is 1.06 g cm ⁻³ . Calculate how many m of ethyl benzenecarboxylate were used.	oles [2]
(v)	Calculate the percentage yield obtained by Rhodri.	[2]
(vi)	Give a reason why the percentage yield was substantially lower than 100% .	[1]
	Total	[20]

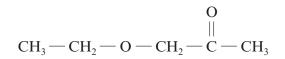
- 5. This question concerns isomers with molecular formula $C_5H_{10}O_2$.
 - (a) Isomers P, Q, R and S all react with aqueous sodium carbonate to produce carbon dioxide.

Isomer **P** is a straight-chain compound.

Isomer Q contains a chiral carbon centre.

Isomer **R** has only two peaks in its NMR spectrum, both of which are singlets.

Draw the displayed formulae for all **four** isomers.


(b) Isomer T is a neutral, sweet-smelling compound and is formed by the reaction between compounds X and Y in the presence of concentrated sulfuric acid.

Compound X has an absorption in its infrared spectrum at 1750 cm^{-1} and a broad absorption around 3000 cm^{-1} .

Compound Y can be formed directly from ethanal.

(i)	Use a Drav	reasoning. [4] <i>QWC</i> [2]	
(ii)	I.	State the reagent needed to form compound Y from ethanal.	[1]
	II.	State the role of sulfuric acid in the formation of T .	[1]

(c) Isomer U has the structural formula shown below.

List the peaks which would be found in the NMR spectrum of isomer U. Identify which protons are responsible for each peak, giving the approximate chemical shift (ppm) and the splitting of the peak. [4]

(d) Explain which one of isomers **P**, **T** and **U** would have the highest boiling temperature.

[3] *QWC* [1]

[4]

Total [20]

Section B Total [40]

GCE A level

CHEMISTRY – DATA SHEET FOR USE WITH CH4

P.M. THURSDAY, 26 January 2012

Infrared Spectroscopy characteristic absorption values

Bond	Wavenumber/cm ⁻¹
C—Br	500 to 600
C—Cl	650 to 800
С—О	1000 to 1300
C=C	1620 to 1670
С=О	1650 to 1750
C≡N	2100 to 2250
С—Н	2800 to 3100
O—H	2500 to 3550
N—H	3300 to 3500

Nuclear Magnetic Resonance Spectroscopy

Candidates are reminded that the splitting of any resonance into n components indicates the presence of n-1 hydrogen atoms on the **adjacent** carbon, oxygen or nitrogen atoms.

Typical proton chemical shift values (δ) relative to TMS = 0

Type of proton	Chemical shift /ppm
—CH ₃	0.1 to 2.0
R—CH ₃	0.9
$R-CH_2-R$	1.3
$CH_3 - C \equiv N$	2.0
CH ₃ -C	2.0 to 2.5
$CH_3 - C < O$ $-CH_2 - C < O$	2.0 to 3.0
$-O-CH_2-C$	2.5 to 3.0
$-O-CH_3$, $-OCH_2-R$, $-O-CH=C$	3.5 to 4.0
R—OH	4.5 *
CH ₂ =C	4.8
R-C ^C H	9.8 *
R-C ^{CO} OH	11.0 *

*variable figure dependent on concentration and solvent

	0	4 00	Helium	20.2 Ne Neon 10	40.0 Ar 18 18	83.8 Kr Xf 36	131 Xe 54	$\mathop{Radon}\limits^{(222)} {{Rn}\atop {86}}$			
	2			19.0 F Fluorine 9	35.5 Cl Chlorine 17	79.9 Bromine 35	127 I Iodine 53	(210) At Astatine 85		175 Lu T1 71	(257) Lr Lawrencium 103
	9		p Block	16.0 O 8	32.1 S Sulfur 16	79.0 Se 34	128 Te S2	(210) PO Polonium 84		${f Yb}^{173}_{70}$	(254) No Nobelium 102
	S	p B	14.0 N Nitrogen	31.0 Phosphorus 15	74.9 As Arsenic 33	122 Sb Antimony 51	209 Bismuth 83		169 Tm Thulium 69	(256) Md Mendelevium 101	
	4			Carbon 6	28.1 Si 14	72.6 Ge 32	119 Sn 50 50	207 Pb Lead 82		167 Er Erbium 68	(253) Fm Fermium 100
	e			B B 5	27.0 Al Aluminium 13	69.7 Ga 31	115 In Indium 49	204 TI Thallium 81		165 Ho Holmium 67	(254) ES Einsteinium 99
LE					Î	65.4 Zn Zinc 30	112 Cd Cadmium 48	201 Hg Mercury 80		163 Dy Dysprosium 66	(251) Cf Californium 98
THE PERIODIC TABLE						63.5 Cu Copper 29	108 Ag Silver 47	197 Au Gold 79	f Block	159 Tb ferbium 65	(245) Bk Berkelium 97
DIC						58.7 Ni Nickel 28	106 Pd Palladium	195 Pt 78	fB	157 Gd 64 64	Cm Cm 96
ERIC				0.5	7	58.9 Co Cobalt 27	103 Rh 45	192 Ir 77		(153) Eu 63	(243) Am Americium 95
HE P	Group		Key relative	\geq	d Block	Fe Iron 26	101 Ruthenium 44	Os Os 76		150 Sm 5amarium 62	(242) Pu Plutonium 94
IT	G			$A_{\rm r}$ Symbol Name Z	d E	Manganese	98.9 Tc Technetium	Isterna Istern		(147) Promethium 61	(237) Np Neptunium 93
						Cr Cr Chromium 24	95.9 MO Molybdenum	Tungsten 74		144 Nd Neodymium 60	238 U Uranium 92
						50.9 V 23	92.9 Nb Niobium 41	Ta Tantalum 73		P1 P1 Praseodymium 59	(231) Pa Protactinium 91
						n Titanium	91.2 Zr Zirconium 40	Hafnium 72		140 Ce S8	232 Th Thorium 90
		•			↓	a Sc 21	n Yttrium 39	$\begin{array}{c c} & & 139 \\ La \\ Lanthanum \\ 57 \end{array}$	Actinium 89	 Lanthanoid elements 	 Actinoid elements
	7	s Block		n Beryllium	Definition of the second secon	n Calcium 20	87.6 Sr 38	n Barium 56	n Radium 88	► La1 ele	►► Ac
	1	↓L	1.01 H Hydrogen 1	6.94 Li Lithium 3	23.0 Na Sodium	39.1 K Potassium 19	85.5 85.5 Rb Rubidium 37	133 Cs 55	(223) Fr 87		
		Period	1	2	\mathfrak{C}	(1094-01A) V	6	L		

3